

	a/a	Greek RBDs	Water (de-) efficient
→ Up to today the problem is mainly faced by the transportation of assorted resources from neighbouring RBDs, but this does not pose any sustainable vision for its long-term resolution.	1	West Peloponnese	Surplus
	2	North Peloponnese	Surplus
	3	East Peloponnese	Deficient
	4	West Sterea Hellas	Surplus
	5	Epirus	Surplus
	6	Attica	Marginal surplus
	7	East Sterea Hellas	Deficient
long-term resolution.	8	Thessaly	Deficient
T I (1 ())	9	West Macedonia	Surplus
I ne profile of irrigation	10	Central Macedonia	Marginal surplus
water demand may match	11	East Macedonia	Surplus
satisfactorily with the	12	Thrace	Surplus
from the corresponding	13	Crete	Marginal deficient
	14	Aegean islands	Deficient

			- 1			
A/A	INPUT CHARACTERISTICS	UNIT	VALUES			
1	Popul. Equivalent	p.e.	100,000		POLLUTION PAPAMETER	VALUE
2	Max. daily supply	m³/d	32,000			
3	Hourly waste peak	m³/h	1,458		BOD ₅ (mg/l)	≤ 10
4	Hourly design peak	m³/h	1,762		Volatile Susp. Solids (mg/l)	≤ 10
5	Input from underground water	m³/d	7,300		Total Nitrogen (TKN) (mg/l)	≤ 15
6	Volatile solids	kg/d	8,000			
7	Average daily supply	m³/d	15,000		Ammonium nitrogen (N-NH ₄) (mg/l)	< 2
8	BOD ₅	mg/l	402		Residual chlorine (mg/l)	≤ 0.50
9	Total N	mg/l	80			
10	Total NP	mg/l	16			
Wast (Asim	ewater characteristic	s for the o	designed plar	nt E	Effluent specification (Asima	akis <i>et</i>

Cost components distribution of the tertiary treatment Personnel costs, heating, fuel and maintenance of the vehicles Maintenance and/or replacement of electro- mechanical equipment Chemicals consumption	
 costs, heating, fuel and maintenance of the vehicles Maintenance and/or replacement of electro- mechanical equipment Chemicals consumption Experticular Solution 	Cos (k€)
replacement of relectro- mechanical equipment Chemicals consumption 44% 30% Chemicals consumption Energy consumption	175
Chemicals consumption 44% 30% Chemicals consumption Energy consumption	22
Energy consumption	80
Energy consumption	120
Energy consumption	3
Other costs	400
Cost components distribution of the Cost components of the tertiary treatr tertiary treatment	ment

Res	ults 1/	2				
Year	Personnel and Overhead costs (increase 4% per year)	Operatio Energy costs (increase 3% per year)	nal Cost per ye Maintenance (increase 5% per year)	ar (in k€) Chemicals (increase 3% per year)	Other expenses (increase 5% per year)	Total tertiary treatment cost (in k€
2012	175	120	22	80	3	400
2013	182	124	23	82	3	414
2014	189	127	24	85	3	429
2015	197	131	25	87	3	444
2016	205	135	27	90	4	460
2017	213	139	28	93	4	477
2018	221	143	29	96	4	494
2019	230	148	31	98	4	511
2020	239	152	33	101	4	530
 2021	249	157	34	104	5	549

ece 1	Results 2/2 Annual WWTP income for a selling price of $2 \notin m^3$ for various percentages of water recycle (in $k \notin$)												
ъ Š	Percentage of Year												
cience an Rhodes -	water recycled and sold	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019		
11, all S	5%	402	410	420	430	430	443	452	461	470	480		
ente	10%	800	820	840	850	870	887	904	920	940	960		
L agu	15%	1,200	1,229	1,250	1,280	1,300	1,330	1,360	1,380	1,400	1,440		
pte	20%	1,600	1,640	1,670	1,700	1,740	1,770	1,800	1,840	1,880	1,920		
nference on E 011) – 8 - 10 Si	Economic analysis of the investment (NPV & IRR) for 20% recycle percent										-		
1 20 1 20	water sening p			(KC) II			(€/m³)	•	vi v (rcc)				
/ (CES	1.3		-50	9 5.4	45%		1.6		889	12.12%			
nterna	1.4		-43	3 7.7	79%		1.7		1,355	14.16%			
12th I Techi	1.5		423	3 10.	01%		1.8		1,821	16.13%			
'Techr	nical and economic	evaluation	of water r	euse fron	n Wastew	ater Treat	ments Pla	nts' by E	. Kondili et	al.			

