Pattern-Matching in DNA sequences using WEKA
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Abstract

Weka (Waikato Environment for Knowledge Analysis) can be used in several different levels. It is an environment for automatic classification, clustering, regression and feature selection which contains an extensive collection of machine learning algorithms and data pre-processing methods. In classification or regression, evaluation tools are used for analyzing and predicting the outcome associated with a particular individual. In clustering, individuals which share certain properties are grouped together. However, while data mining methods are widely used to find patterns within large amounts of data, Weka does not provide any special data mining framework for biological data. Bioweka suite, on the other hand, adds further functionality to it and applies knowledge discovery applications to biological data. In this paper, we present how bioweka can be a tool in extracting useful information by comparing local gene cluster in human and in other mammal chromosomes. A wide range of filter tools and clustering algorithms are used so as to group together chromosomes of mammals that share similar relationships and to give some exciting opportunities for determining chromosomal similarities between related species.  
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1. Introduction
In recent years, data stored worldwide has augmented, so that the need to extract knowledge from very large databases is increasing. Knowledge Discovery in Databases (KDD) or just Knowledge Discovery (KD) has been defined as the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. Data mining research has led to the developments of numerous efficient and scalable methods for mining interesting patterns and knowledge in large databases, and it has been defined as one particular step of the KDD process. It uses different algorithms for classification, regression, clustering or association rules. These new progresses in data mining have already been applied to bio-data analysis, as everyone believe that it will  provide the necessary tools for better understanding of gene expression, drug design, and other emerging problems in genomics and proteomics[4].

At the same time, numerous computational methods and algorithms, particularly in data mining, have been developed to extract the hidden knowledge in these data that is relevant to our understanding of the biological systems. One of the most important search problems in bio-data analysis is similarity search and comparison among bio-sequences and structures. For example, base-by-base  comparisons of the chromosomes of related species are made and computational approaches have been developed for comparative analysis. In biology, therefore, various tools have been developed for searching for similarity among biosequences. A well known tool is BLAST [1]. The idea is aligning sequences so that similarity can be revealed in the presence of small variations in position. Other rapid and sensitive algorithms that have been developed to perform homology searches in sequence databases are FASTA [5], BLAT [6] and PatternHunter [7]. All those methods follow a seed-based approach for detecting alignments of interest and they are based on a common principle. At the first stage, they search for small patterns (called “seeds”) shared by input sequences and then extend some of those (“hits”) into larger alignments of similarity regions. However, bio-data often consists of a lot of features which form a high dimension space and it is crucial to discover pair-wise frequent patterns and cluster bio-data based on such frequent patterns [2].
In this paper, we undertake comparative analysis of human and chimpanzee chromosomes using WEKA project (Waikato Environment for Knowledge Analysis) which provides a large collection of machine learning algorithms written in Java for data pre-processing, classification, clustering, association rules, and visualization. It is a framework that is distributed as open source software, running on almost any computer platform, and it can be invoked through a common Graphical User Interface (GUI). In Weka, the overall data mining process takes place on a single machine, since the algorithms can be executed only locally [3]. However, while data mining methods are widely used to find patterns within large amounts of data and to derive general laws from the data, Weka does not provide any special data mining framework for biological data, especially sequence and gene expression data. The BioWeka workbench (implemented in Java and distributed under the GNU open source license) adds this functionality to the Weka software and it provides a general foundation for the rapid development of new data mining applications to biological data. 
In BioWeka, there are components that are frequently used within biological research projects and were proven to yield desirable results in KDD experiments. To be more specific, BioWeka supports different sequence formats as well as XML based formats, it provides sequence-specific filters and it offers alignment-based classification. It also supports the analysis of gene expression data, by loading files with gene expression data into Weka and normalizing the numeric data. The BioWeka project was initiated to minimize the effort, and thus the time, to implement and apply KDD applications to biological data. It helps researchers in the area of computational biology and here, it will help us to estimate the number and types of rearrangements that have occurred and also to determine when they occurred. In a given organism or species, genes are found in a given order that is maintained on the chromosomes from one generation to the next. Genetic analysis has revealed that genes with a related function are frequently found to be clustered at one chromosomal location. As it is commonly believed that chimpanzees,  to the exclusion of other primates, are the most closely related species to human and that clustering of related genes presumably provides an evolutionary advantage to species, we focus on comparing local gene cluster in human (Homo Sapiens) and chimpanzee (Pan troglodytes ) chromosomes. Specifically, we applied many conventional clustering algorithms to the above dataset and we then used the results for identifying biologically relevant groups of genes and samples. 

The outline of this paper is organized as follows. Section 2 reviews materials and methods that we use in order to tackle the problem. Section 3 presents the algorithm that we implement to our data. Section 4 presents our results and section 5 concludes the paper.

2. Materials and Methods

2.1 Data Collection 

The DNA dataset used in this study was obtained from the website of the Ensembl Project (Ensembl Genome Browser). Ensembl [9] provides a software system to store, analyse, use and display genomic information. The genomes of 14 chordates are currently available through Ensembl, from mammals such as Human and Mouse through to the ‘primitive’ chordate Ciona intestinalis (the smallest of any experimentally manipulable chordate). The genomes of three key model eukaryotes, yeast, fly and worm, are also imported from their respective databases to provide easy integration of information from these organisms with chordates. Finally a limited number of insect genomes are also available through Ensembl owing to our participation in the Vectorbase consortium. The data used was taken from two mammalian genomes (Homo sapiens and Pan Troglodytes genome) to take into consideration possible similarity that may exist among the genes. This dataset comprises of 793 DNA sequences from which 435 are from the genomic sequence of Human chromosomes (Homo sapiens) and 358 are from the chimpanzee chromosomes (Pan troglodytes). The sequences were stored in two separate “flat” FASTA files called chrom1.txt and chimp_chrom1.txt. To merge both files into one single ARFF file, both files are first converted into ARFF. Then, one file (for this scenario, the Homo sapiens set) is loaded into the Preprocess panel of the Weka’s Explorer workbench. Finally, the BioWeka’s MergeSets filter is applied—specifying the Pan troglodytes set as an additional input file. This results in a single data set (called results.arff), which contains an additional attribute (relationName), which determines the origin of the sequences.
2.1 Machine Learning Approach

The main interface in Weka [8] is the Explorer, shown in Figure 1. It has a set of panels, each of which can be used to perform a certain task. 
· In the Preprocess panel, one can load datasets, browse the characteristics of attributes and apply any combination of Weka’s supervised and unsupervised filter to the data. The Preprocess panel also shows a histogram of the attribute that is currently selected and some statistics about it. Once a dataset has been loaded, one of the other panels in the Explorer can be used to perform further analysis. 
· If the data entail a classification or regression problem, it can be processed in the Classify panel. This allows configuring and executing any of the Weka classifiers on the current dataset, as it provides an interface to learning algorithms for classification and regression models and evaluation tools for analyzing the outcome of the learning process. 
· In the Cluster panel, one can have access to Weka’s clustering algorithms. These include k-means, mixtures of normal distributions with diagonal co-variance matrices estimated using EM, and a heuristic incremental hierarchical clustering scheme. They can be visualized in a pop-up data visualization tool and with them one can find groups of similar instances in a dataset.
· In the Explorer’s Associate panel are available algorithms for generating association rules, such as apriori algorithm, that can be used to statistical dependencies between groups of attributes.
· The fifth panel (Select Attributes panel) offers methods for identifying those subsets of attributes that are predictive of another (target) attribute in the data. It is a panel that allows configuring and applying any combination of Weka attribute evaluator and search method to select the most pertinent attributes in the dataset.  Search methods include best-first search, forward selection, genetic algorithms and a simple ranking of attributes. Evaluation measures include correlation and entropy-based criteria as well as the performance of a selected learning scheme (e.g. a decision tree learner) for a particular subset of attributes. Different search and evaluation methods can be combined, making the system very flexible.
· The last panel in the Explorer, Visualization, displays a scatter plot matrix for all pairs of attributes in the data. It allows visualizing the current dataset in one and two dimensions.
[image: image1.png]Weka Explorer

Preprocess | Cassify || Clister [ associste | Sefect ttrutes | Visuaize.

Open fle

Fiter

Choase_|Mone

Curtert elation

Reltior: None
nstances: None Atrbutes: None

Selected atriute.

Neme: Nore
Missing: None

Distnct: None.

Type: Nore
Unioe: Nore

Atrbutes

Visualze Al

Remave

Status

Welcome to the Weka Exglorer





Figure 1: Weka’s Explorer Window
In the case of biological sequences (RNA, DNA and amino acid sequences) there is a crucial point: how to derive a set of numerical or nominal attributes for a given sequence, as there are no special data mining methods to operate on strings. BioWeka framework [10] adds this functionality to the Weka software, as it provides filters that extract numeric or nominal features from sequences. It is an environment for the analysis of biological data and for knowledge discovery in biological data. While it is based on the Weka workbench, it is a framework by itself as can be extended in the same way Weka can. 
In particular, the functionality, that BioWeka offers, includes data converters (e.g. for FASTA [12], GenBank [14], EMBL [13], Swiss-Prot [15] sequence files, XML files, tab-delimited microarray data). The FASTA format was developed for the Fast Alignment Search Tool for Proteins (FASTP, [11]) and it was later generalized to FAST-ALL. A file of this format can contain as many sequences as necessary and each sequence may consist of nucleotides or amino acids. The entry of a new sequence is indicated by the greater sign “>” followed by an identifier (“1 dna”) and a description that characterize the sequence e.g.:
>1 dna:chromosome chromosome:NCBI35:1:1:245522847:1

TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCAACCCTAACCCT

………………………………………………………………………….
The EMBL (European Molecular Biology Laboratory) format [13] is exclusively for the nucleotide sequences, as it is used for the EMBL Nucleotide Sequence Database. A file of this format may contain one or more sequence entries. However, in contrast to the FASTA format, its structure is much more complex and unified so that one can accumulate not only the sequence of a gene but also further information, e. g. a useful description of the protein the gene codes for, or only to a specific location within the sequence (a single nucleotide or a range of nucleotides). Another flat file format for nucleotide sequences is GenBank [14] which is equal to the EMBL one having the same types of features but they differ in the tags. Finally, the Swiss-Prot database [15] has the same format as the EMBL but it is for amino acid sequences.
There are also classification methods (e.g. BLAST or PSI-BLAST, local, global and secondary structure element alignments, reimplementation of Eclat method), filter tools and other components to merge ARFF files, save ARFF files in a sequence format and create filter pipelines. In the bioinformatics arena, BioWeka data mining suite has also been used to translate sequences (DNA to RNA to Protein, DNA/RNA to its reverse complement), generate the open reading frames of DNA/RNA sequences, analyze amino acid properties based on the Amino Acid Index database, calculate the codon frequencies or amino acid composition and normalize numeric feature vectors 

In our study we use Eclat filter in order to discriminate between DNA sequences from different species and the Expectation Maximization algorithm (EM) for maximum likelihood estimation of mixture model parameters.

3. Algorithms

3.1 Eclat Implementation
In the first step, we implement the Eclat [16] filter in the Homo sapiens - Pan Troglodytes dataset, which we loaded in the Weka workbench using the FastaSequenceLoader component of BioWeka. This filter accepts a set of sequences and returns a set of codon frequencies. It has two properties. The sequenceAttribute property specifies the attribute holding the sequences and the alphabet property specifies the sequences’ alphabet (here is DNA). 
The implementation of the EclatFilter component is very simple. It uses internally a MultipleFilter instance to form a filter pipeline consisting of the following components:

1. Translate: Cuts the sequences after the first stop codon. Therefore, the translator’s property is filled with a single Terminator translator.

2. SymbolCounter: It is configured, so that it calculates the codon frequencies and does not take into account ambiguous symbols.

3. Normalize: The normalizer property is set to a MinMaxNormalizer instance, which normalizes the codon frequencies, so that all values are in the interval [−1.0, 1.0].

4. Copy: Copies the class attribute to the end of the attribute list.

5. Remove: Removes the original sequence attributes and the class attribute.
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Figure 2: Applying Eclat Filter
To be more specific, for each sequence in the dataset codon frequencies are computed from its beginning up to the first stop codon. To account for some codons missing randomly, pseudocounts are used. The frequency for a given codon c is computed as
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where ni denotes the absolute number of occurrences of a codon i. Therefore, for each sequence 64 attributes are derived for training and classification. Finally, a SVM [9] is trained on the feature set to discriminate between sequences from Homo sapiens - Pan Troglodytes. 
3.2  EM
Secondly, we test to load the reduced Homo sapiens - Pan Troglodytes dataset into the Weka workbench using the CSV loader and we implement in it the EM cluster algorithm. We get cluster assignments from the estimated mixture model by assigning each instance xj to the cluster of highest a posteriori probability argmaxi P (cijxj).

EM

==

Number of clusters selected by cross validation: 6

Cluster: 0 Prior probability: 0.433

Attribute: TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

Discrete Estimator. Counts =  1.37 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89  (Total = 48.52)

Attribute: relationName

Discrete Estimator. Counts =  22.84 1.68  (Total = 24.52)

Cluster: 1 Prior probability: 0

Attribute: TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

Discrete Estimator. Counts =  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  (Total = 26)

Attribute: relationName

Discrete Estimator. Counts =  1 1  (Total = 2)

Cluster: 2 Prior probability: 0

Attribute: TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

Discrete Estimator. Counts =  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  (Total = 26)

Attribute: relationName

Discrete Estimator. Counts =  1 1  (Total = 2)

Cluster: 3 Prior probability: 0.567

Attribute: TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

Discrete Estimator. Counts =  17.63 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11  (Total = 55.48)

Attribute: relationName

Discrete Estimator. Counts =  5.16 26.32  (Total = 31.48)

Cluster: 4 Prior probability: 0

Attribute: TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC
Discrete Estimator. Counts =  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  (Total = 26)

Attribute: relationName

Discrete Estimator. Counts =  1 1  (Total = 2)

Cluster: 5 Prior probability: 0

Attribute: TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

Discrete Estimator. Counts =  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  (Total = 26)

Attribute: relationName

Discrete Estimator. Counts =  1 1  (Total = 2)

Clustered Instances

0      25 ( 48%)

3      27 ( 52%)

Log likelihood: -3.32727

Figure 3: The number of clusters that correspond to our reduced dataset

4. Results
The implementation of SMO component solves the SVM problem without any extra matrix storage and without invoking an iterative numerical routine for each sub-problem. It globally replaces all missing values and transforms nominal attributes into binary ones. It also normalizes all attributes by default. Tables 1, 2 and 3 summarize the results of the SVM application, which estimated accuracy is approximately 61, 7%.

	Correctly Classified Instances
	148
	18.6633 %               

	Incorrectly Classified Instances       
	645  
	81.3367 %

	Kappa statistic                         
	-0.6566
	

	Mean absolute error
	0.8134
	

	Root mean squared error
	0.9019
	

	Relative absolute error
	164.2156 %
	

	Root relative squared error
	181.2281 %
	

	Total Number of Instances
	793     
	


Table 1: Stratified cross-validation  
	 TP Rate            FP Rate             Precision           Recall       F-Measure           Class

	  0.299                 0.95                    0.277               0.299          0.287              chrom1.txt

	  0.05                   0.701                  0.056               0.05            0.053           chimp_chrom1.txt


Table 2: Detailed Accuracy By Class
	                                      a          b           <-- classified as

	                                    130      305    |   a = chrom1.txt

	                                    340       18     |   b = chimp_chrom1.txt


Table 3: Confusion Matrix
Furthermore, in our study, implementing the EM algorithm, we get a number of clusters that reveal that there are common sequences in the human and chimpanzee chromosomes. In a given organism or species, genes are found in a given order that is maintained on the chromosomes from one generation to the next. Genetic analysis has revealed that genes with a related function are frequently found to be clustered at one chromosomal location. The high resemblance, in the level of a sequence, constitutes a clue of common evolutionary origin and identical or similar operation. From the clusters visualization, we can estimate the similarity and we can see that same sequences from both chromosomes belong to the same cluster.  Using this information and implementing the algorithm to all the chromosomes of the two mammals, we can confirm that our DNA is 98% identical to chimpanzees. 
5.  Conclusion
BioWeka is a useful software package that makes it easy to develop new data mining methods for biological data. There are many different components that can be combined to form a complete KD application without writing a single line of code and existing components can be reused for their custom solutions. For instance, the Eclat method required 647 lines of code compared to the original implementation, which consists of 1260 lines of code. Moreover, the BioWeka implementation provides an easy-to-use GUI based on the Weka software. However, a comparison of the performance demonstrated that the original Eclat implementation is faster than BioWeka’s implementation.
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