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Abstract 
 
A new approach for texture feature extraction is described, appropriate for 

unsupervised texture segmentation applications, based on the directional filtering of 

an image. A new construction of directional filters suitable for Image Analysis which 

decompose the given image to a set of channels (subimages), each one containing an 

isolated angular section of the initial image spectrum, is proposed. An envelope 

detection method is used to estimate the energy locally for each pixel of these 

channels and the constructed feature vectors are clustered by an unsupervised 

technique based on an Expectation Maximization Algorithm. 
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1. Introduction 

Texture is the term used to qualify the surface of a given object and is 

undoubtedly one of the main features used in image processing and pattern 

recognition. An important task in many image analysis applications is the 

unsupervised texture segmentation of a picture into homogeneous texture regions. An 

effective and efficient texture segmentation method is desired in applications like the 

analysis of aerial images, biomedical images and the automation of industrial 

applications. Like other segmentation problems, the texture segmentation requires the 

identification and use of proper texture-specific features with high discriminatory 

power.  

Texture features related to the spectrum of the image can be extracted by using 

a filterbank consisting of filters with non-overlapping pass-band areas which analyse 

the initial image x  
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into a series of 2-D signals, 1 2, , , Ly y y… ,  
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called channels or subimages. These L channels are of the same magnitude as the 

initial image x but each of them contains only a distinct spectrum area, iA , of x. 

Utilizing these L channels, a feature vector with L components can be constructed for 

each pixel ( , )x m n of the initial image, x. Each component is related to the pixel 

energy content in the spectrum area iA  and can be evaluated by detecting the 

envelope value of the iy  in the corresponding pixel position ( , )iy m n , as Laine and 

Fan [1] did. A good detection of the envelope can be realised by taking the square of 

the iy  and smoothing the result by a properly chosen baseband filter (Figure 1). 

Figure 1. The envelope containing the profile of the 

spectrum area Ai is obtained by squaring the channel yi 

and smoothing the result. 

 

There are many approaches in constructing such filterbanks, with the Gabor 

series and the Discrete Wavelet Frames the most well known among them.  

In the present work a new analysis method, based on a filterbank constructed 

with directional filters (DF), is proposed (the Directional Filter Analysis-DFA). When 

an image x is analysed by the DF filterbank, each resulting channel has the same size 

as x and contains a distinct wedge-shaped spectrum area placed radially, like the ones 

depicted in Figure 2. The features extracted from these channels are used either alone 

or combined with other features extracted from DWF analysis and can form a 

powerful discriminating feature vector.  

The rest of this work is organised as follows: In Chapter 2 the technique for 

constructing 2-D directional filters is shortly reviewed. In Chapter 3 a new set of 

directional filters is proposed, suitable for the directional analysis of an image and the 

construction of equal-sized 2-D channels. In the same chapter the proposed method 
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for the features extraction of the image is described. In Chapter 4 a clustering method 

based on the Expectation Maximization (EM) algorithm is presented and the 

unsupervised texture segmentation of an image is described. Finally in Chapter 5 

some experiments with texture classification and segmentation are presented and their 

results are compared with existing classification techniques. 

Figure 2. The directional analysis results in 4 

channels of the same size with the image, each one 

containing a wedge shaped area of the initial 

spectrum. 

 

2. The directional analysis technique 

Bamberger and Smith [2] give the basic ideas for the construction of 

directional filter banks. A detailed description can be found in the work of Do [3]. 

Here, only the essential theory concerning the directional 2-D filtering is included. 

Given a 2-D sampling lattice, a 2 2×  non-singular integer matrix M can define 

a sublattice SBL(M) as 

 { }2SBL( ) : M ,Μ = = ⋅ ∈m m n n  (1) 

For a given 2-D signal ( )x n  the downsampled version ( )dx n  of an M-fold 

downsampling, is derived by 

 [ ] [M ]dx x= ⋅n n  (2) 

and it contains all the samples of ( )x n which lie on the SBL(M). Several authors, for 

instance Karlsson and M. Vetterli [4], have shown that the relation between the 2-D 

Fourier Transform, ( )dX ω , of the downsampled version ( )dx n , and the initial 

signal’s transform, ( )X ω  is given by 
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Here, N(M)  represents the set of integer vectors of the form Mt  where 

[ ) [ )0,1 0,1∈ ×t . It can be shown that the number of elements in N(M)  is equal 

to det(M) . 

The upsampled version ( )ux n  of a 2-D signal ( )x n  of an M-fold upsampling 

and the corresponding 2-D Fourier Transform is derived by 
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Two fundamental structures of directional filters are the fan and the quadrant 

filter types. The frequency responses of these two filter types are shown in Figure 3(a) 

and 3(b) respectively. A fan filter can be constructed from a simple 2-D lowpass filter 

with a frequency response like the one in Figure 4(a). This lowpass filter is M-

downsampled according to (2), where the non-singular matrix M is given by 
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 (a) (b) 

Figure 3. Frequency Responses of: (a) a pair of fan filters and 

(b) a pair of quadrant filters. 

 

By applying (3) it can be easily shown that the resulted Μ-downsampled 

version has a diamond-shaped frequency response like the one shown in Figure 4(b). 

By modulating this filter mask by ,π  in either the one or the other frequency variable, 

the pair of fan filters in Figure 4(c) and 4(d) is obtained. The pair of quadrant filters is 

implemented by M-upsampling a pair of fan filters. The matrix used for the 

upsampling is the one of (6), the upsampling procedure is described by (4) and the 

resulted quadrant frequency response is assured by applying (5). 



 

 (a) (b) (c) (d) 

Figure 4. Frequency Responses of: (a) a Lowpass filter, 

(b) a lowpass filter after M-downsampling (diamond 

response), (c) and (d) a diamond response after π -

modulation in one frequency variable. 

 

3. The DFA procedure 

Various techniques for the construction of directional filters can be found in 

international literature, like, for instance, Park et al [5] and Bamberger and Smith [2]. 

However, all these techniques are derived from the coding applications area, where 

the samples of the obtained analysis channels are decimated, so these channels and the 

initial image no longer have the same size. Features extracted from such channels are 

not shift invariant and cannot be used for a reliable unsupervised texture segmentation 

procedure.  

In this paper a simpler Directional Filter Bank dividing the initial spectrum 

into the four regions showed in Figure 2, is proposed. In Figure 5 the construction of 

the corresponding filters using the convolution of a fan and a quadrant filter, is shown. 

Combining the two types of fan with the two types of quadrant filters, the four 

directional filters are obtained. In general, directional filters have poor response in the 

very low frequencies area; they cannot resolve it so this area must be removed from 

the initial image. For this reason a circularly symmetric 2-D filter, with a bandstop 

response in the very low frequency area, is used in order to eliminate a narrow region 

around (0,0)T frequency. The outline of the DFA procedure is shown in Figure 6. 

The feature vector components are formed using an envelope detection 

technique which is a two-stage process. The first stage includes squaring (or 

rectification) of each analysis channel while during the second stage, smoothing of 

each channel is performed. For the smoothing stage b-spline filters are employed. 
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Figure 5. Frequency responses of the DFA filterbank 

 

In order to suitably remove the generation of transient regions at the 

boundaries of the initial image, during the convolution (filtering), a periodic-

symmetric expansion of the image is undertaken, before the analysis takes place. 

 

 

Figure 6. The DFA method. 
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4. Clustering 

The segmentation procedure is completed with the unsupervised classification 

of the feature vectors , 1, 2, , Ni i =x …  into the J classes, C1,C2,…CJ, corresponding to 

the same number of discrete texture regions. From the feature generation procedure it 

is anticipated that feature vectors form compact clusters.  

In the present work, when J=2 or J=3, the unsupervised classification has been 

based on the Expectation Maximization Algorithm. This method has been suggested 

in the recent scientific literature as in the work of Pereira et al [6] and Sanjay-Gopal 

and Hebert [7]. Although no feature reduction is performed its complexity remains 

comparable to the MDA procedure and the 2-D clustering technique associated with 

it. Moreover, using the EM method the classification that follows is based on the well-

known Bayes classification rule, mentioned in the next paragraph, which results in 

minimum probability of segmentation error.  

According to the EM method the distribution of feature vectors is considered 

to be a mixture of J distributions, each one characterized by a PDF, ( | )jp Cx , and a 

probability, , 1, , JjP j = … . If the parameters' vector Θ , consisting of the J PDF 

parameters along with the jP , was known, the classification would be implemented 

based on Bayes classification rule, i.e. xi would be classified to the class jC  if and 

only if it was valid that ( | ) ( | )j i k iP C P C>x x  for every 1,2,..., J and k k j= ≠ . 

Each feature vector xi corresponds to a pixel of the analyzed image which, as a 

matter of fact, belongs to one of the texture regions. Consequently there is an integer 

label ij  with a value in the interval [1,J] that denotes the actual class to which this 

vector belongs. Of course no value of these labels is known during an unsupervised 

classification procedure, which is performed exactly for the value designation of these 

labels. 

In this work the EM algorithm estimates the parameters' vector Θ  in such a 

way that the Expected Value of the likelihood function ( )1 1, , , ,N NE p j j⎡ ⎤⎣ ⎦x x…  over 

the Θ  and the label set , 1, Nij i = …  is maximized. As xi are statistically 

independent, the initial likelihood function is given as the product 



1 1( , ,..., , )N NP j j∏ x x . However it is valid that ( , ) ( | )
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loglikelihood function is used: 
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The estimation of Θ  for the maximization of ( )( );Q tΘ Θ  is performed 

iteratively until a small enough change of Θ  is reached and each iteration stage 

includes two steps (given below with slightly simpler notation): 

• E-step: At the (t+1)th stage of the iteration, where ( )tΘ  is available, 

compute the expected value of ( ; ( ))Q tΘ Θ , that is: 

( ) ( ) ( )( )
1 1

; ( ) | ; ( ) ln | ;
N m

j i i j j
i j

Q t P C t p C P
= =

= ∑∑Θ Θ x Θ x Θ  

• M-step: Compute the next (t+1)th estimate ofΘ by maximizing ( ; ( ))Q tΘ Θ , 

( )( 1) arg max ; ( )t Q t+ =
Θ

Θ Θ Θ  

The maximization is achieved by evaluating the gradient of ( ); ( )Q tΘ Θ and 

setting it equal to 0. This maximization with respect to P is a constraint optimization 

problem since 

1

0, 1,..., and 1
J

j j
j

P j J P
=

≥ = =∑  

In the case of Gaussian distributions, the parameters vector Θ  includes the 

mean value and the scatter matrix along with the probability of each class. The above 

two steps are realized in the next equations, as they were used by the algorithm in the 



book of Theodoridis and Koutroumbas [8]. In every iteration stage the probability 

( | ; ( ))jP C tx Θ  is calculated for every feature vector and every class: 
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and then the new parameters' estimation is performed: 
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In order to make the clustering process even faster, the EM algorithm was 

applied to a much smaller portion of the initial population, formed by taking one out 

of 20 feature vectors. This reduction did not affect the accuracy of the parameters' 

estimation. The EM-estimated parameters then fed the Bayesian classifier for the final 

classification of the whole population. 

 

5. Experimental Results 

These experiments have been worked on images consisting of two or three 

texture samples. Pixels features have been extracted using the envelope detection 

technique of channels created by the DFA analysis method, as described in Chapter 3. 

An unsupervised class separation, based on EM clustering parameter estimation, and 

Bayesian classification have been performed.  

The first texture segmentation example is given in Figure 7. The initial image 

includes two texture samples. The first texture sample presents directional structure 

along the 0o and the 90o direction, while the second texture type along the 45o 

direction. The DFA method achieves an accurate distinction between the two texture 

samples. In Figure 8, a similar example is given, where three texture samples are 



present, two of them presenting loose directional structure. Again the DFA method 

achieves an acceptable segmentation. 

 

Figure 7. Test image with two texture types and the segmentation results. 

Figure 8. Test image with three texture types and the segmentation results. 

 

6. Conclusions 

In this work, a new approach for texture feature extraction suitable for unsupervised 

segmentation tasks, based on the directional filtering of an image, was described. The 

new technique achieved a novel spectrum partition, which enabled the exploitation of 

the directional structure in the image, when present. In general the proposed technique 

has comparable performance with the DWF method, although the emphasis in the 

results section is given in cases where the directional structure is present. 
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